Refine by
Targeting Disease Articles & Analysis: Older
32 articles found
What Is PROTAC Technology? Proteolytic targeting chimera (PROTAC) is a new type of drug design technology that works by inducing the degradation of target proteins. Unlike conventional small molecules that typically inhibit protein function, PROTACs facilitate the ubiquitination and subsequent degradation of specific proteins. This bifunctional molecule consists of two distinct elements: a ...
Introduction Microarray printing technology has revolutionized the field of genomics and proteomics, and its application in glycobiology is no exception. Glycobiology, the study of carbohydrates and their biological functions, relies heavily on the ability to analyze large-scale carbohydrate interactions. Microarray printing in glycobiology enables the precise and high-throughput analysis of ...
MicroRNAs (miRNAs) are small, non-coding RNA molecules that play a crucial role in the regulation of gene expression. Their ability to modulate various biological processes makes them significant players in the field of molecular biology and medicine. Among the various tools utilized in research and therapeutic applications, miRNA mimics have emerged as powerful instruments for manipulating and ...
Peptidomimetics are structural analogs of peptides or proteins that mimic their biological activities. They are designed to overcome limitations associated with peptides, such as poor stability and bioavailability by preserving or enhancing their functions. Peptidomimetic development involves the design and synthesis of molecules that mimic three-dimensional structures and functional groups of ...
Boxcab Antibody Sequencing is an important experimental method commonly used in studying cellular and protein responses. In biomedical research, antibodies are a powerful tool used in the detection and quantification of target antigens. However, a comprehensive understanding of the antibody requires knowledge of its amino acid sequence, which can be achieved through antibody sequencing.Antibody ...
Mitochondria are a unique type of organelle present within cells, serving as the primary source of energy within living organisms. They are responsible for several life-sustaining processes, including energy production, reducing free radicals, and maintaining cellular signaling. Proteins within the mitochondria play a key role in these processes.Why Sequence Mitochondrial Proteins?The sequencing ...
Introduction In the ever-evolving landscape of drug delivery systems, nanoformulation stands out as a revolutionary approach. Nanoformulation leverages nanotechnology to create drug delivery systems that can improve the efficacy, reduce side effects, and precisely target disease sites. This cutting-edge technology has garnered significant attention from researchers and pharmaceutical companies ...
The development of new and effective drugs is a complex and multifaceted process that requires the collaboration of scientists from diverse fields, including chemistry, biology, and computational modeling. At the heart of this endeavor lies the art of drug design - the strategic and methodical approach to creating molecules that can effectively target and modulate biological pathways to treat ...
Metabolomics is developing rapidly. In medical science research, it is hoped that analysis to identify abnormal metabolic pathways and characteristic biomarkers closely related to diseases will provide a basis for further elucidation of disease pathogenesis. Metabolomics Research Methods Metabolomics collects samples through established metabolomics research methods, and subsequently uses ...
Antibody-drug conjugates (ADCs) represent a rapidly developing field within pharmaceutical biotechnology. ADCs are complex molecules composed of an antibody linked to a biologically active cytotoxic or radioactive compound. They combine the specificity of antibodies, which enables specific target cell binding, and the cell-killing activity of cytotoxic drugs, providing a method of delivering ...
In the vast and ever-evolving field of medicine, the discovery of new drugs has been a critical pursuit, offering hope and relief to countless individuals suffering from various ailments. The process of drug discovery is a complex and multifaceted endeavor, involving the integration of diverse scientific disciplines, including biology, chemistry, and computational science. At the heart of this ...
Coupling drugs combine the precise targeting and potent killing properties, has become a widely recognized form of medication in recent years. Radioactive drug conjugates (RDCs), as a particular form of coupling drugs, are formed by combining radioactive isotopes with disease-targeting molecules. According to the application of RDCs, they can be divided into two main categories: diagnostic RDCs ...
In order to more effectively deliver chemotherapy drugs, Small Molecule Drug Conjugates (SMDC), Antibody Drug Conjugates (ADC), and Degradation Antibody Conjugates (DAC) have been successively explored and developed, enhancing the therapeutic index while providing selective delivery. What are their similarities and differences? What are their respective advantages? What is the current status of ...
Introduction The human body is a complex network of genes and proteins, each playing a crucial role in maintaining our health. One such gene, DNM1L, has garnered significant attention in recent years due to its vital functions and its association with various diseases. In this blog post, we will delve into the world of DNM1L, exploring its function, the diseases it is linked to, and the ...
For a long time, the research and development of each new drug has faced the challenges of high cost and long cycle. In response to these challenges, major pharmaceutical companies have shifted from targeting common diseases to developing drugs for specific diseases. At the same time, these companies are constantly looking for new technologies for new drug development, such as high-throughput ...
In the field of medicine, effectively delivering drugs to the target site in the body is crucial for successful treatment. Over the years, several innovative drug delivery systems have been developed to improve drug efficacy and patient outcomes. In this article, we will discuss four novel drug delivery systems that have shown promising results in recent research. These systems include ...
siRNA, with a molecular weight of about 13 kDa, recruits the RNA-induced silencing complex (RISC) to mRNA through base pairing, thereby inhibiting protein translation. The mRNA is targeted for cleavage through the catalysis of the RISC protein Ago2, a member of the Argonaute family. In addition, other Ago proteins (Ago1, Ago3, and Ago4) catalyze endonuclease-mediated degradation of non-specific ...
In the realm of modern medicine, the quest for new and effective drugs to combat various diseases is a continuous journey. Drug discovery, the process of identifying compounds that can potentially treat diseases, has seen a significant transformation in recent years, thanks to advancements in computational biology and artificial intelligence (AI). In this article, we will delve into the ...
Autoimmune disease target - IL-17 Family IL-17 plays an important role in promoting autoimmune diseases such as psoriasis, psoriatic arthritis, and ankylosing spondylitis (AS). Currently, five large-molecule biopharmaceuticals targeting IL-17/IL-17R are available worldwide, including four IL-17 monoclonal antibodies and one IL-17RA monoclonal antibody, namely Secukinumab(Novartis), Ixekizumab(Eli ...
Thymic Stromal Lymphopoietin (TSLP) is a multifunctional cytokine that acts on various cell types, including dendritic cells, T cells, B cells, neutrophils, mast cells, eosinophils, and innate lymphoid cells, affecting their maturation, survival, and recruitment. It is well-known for its role in promoting type 2 immune responses, such as allergic diseases. In 2021, a monoclonal antibody targeting ...
