MedChemExpress - Model 3-arylisoquinolinamine derivative -1029008-71-6
3-arylisoquinolinamine derivative is a 3-arylisoquinolinamine derivative with antitumor activity.MCE products for research use only. We do not sell to patients.
3-arylisoquinolinamine derivative
MCE China:3-arylisoquinolinamine derivative
Brand:MedChemExpress (MCE)
Cat. No.HY-32364
CAS:1029008-71-6
Purity:99.10%
Storage:Powder -20°C 3 years 4°C 2 years In solvent -80°C 2 years -20°C 1 year
Shipping:Room temperature in continental US; may vary elsewhere.
Description:3-arylisoquinolinamine derivative is a 3-arylisoquinolinamine derivative with antitumor activity.
In Vitro:3-arylisoquinolinamine derivative is a 3-arylisoquinolinamine derivative, extracted from the reference[1], compound 7b.3-arylisoquinolinamine derivative (7b) shows more effective activity against Paclitaxel-resistant HCT-15 human colorectal cancer cell lines when compared to the original cytotoxic cancer drug, Paclitaxel. The cell cycle dynamics is analyzed by flow cytometry. Treatment of human HCT-15 cells with 3-arylisoquinolinamine derivative (7b) blocks or delays the progression of cells from G0/G1 phase into S phase, and induces cell death. Treatment with 3-arylisoquinolinamine derivative (7b) also significantly inhibits the growth of tumors and enhances tumor regression in a Paclitaxel-resistant HCT-15 xenograft model. 3-arylisoquinolinamine derivative (7b) inhibits the cell growth at IC50 value ranges from 14 nM to 32 nM in the human cancer cells tested. In cell cycle analysis using HCT-15 cells, treatment of 1 nM of 3-arylisoquinolinamine derivative (7b) displays a significant increase in G0/G1 phase at 24 h with a decrease in G2/M phase, but the increase of G0/G1 phase at 48 h is not significant. At higher concentration of 3-arylisoquinolinamine derivative (7b) (10 nM), there are a significant increase in G0/G1 phase and decrease in G2/M phase, and an emergence of sub-G1phase, at both 24 h and 48 h. 3-arylisoquinolinamine derivative (7b) blocks or delays the progression of cells from G0/G1 phase into S phase, and induces cell death[1]. 3-arylisoquinolinamine derivative is a 3-arylisoquinolinamine derivative, extracted from the reference[1], compound 13. 3-arylisoquinolinamine derivative (compound 13) is tested in colon cancer cells and its antitumor activity is compared with Paclitaxel. 3-arylisoquinolinamine derivative (IC50: 15 nM in HCT-15 cells, 17 nM in HCT116 cells) shows potent antiproliferative activities with IC50 value in the low nanomolar range in both cells and higher antitumor activities than that of Paclitaxel against Paclitaxel-resistant HCT-15 colorectal cancer cells[2].
In Vivo:3-arylisoquinolinamine derivative (Compound 13) has higher antitumor efficacy (69.2 % inhibition) than that of the control drug, Paclitaxel (48.8 % inhibition) in the inhibition of growth of tumor in an animal model[2].
Animal Administration:Mice[2]The six-week-old female athymic mice (BALB/c nu/nu) are used. All study medications (vehicle control, Paclitaxel: 10 mg/kg/day, 3-arylisoquinolinamine derivative: 10 mg/kg/day) are given by intraperitoneal injections three times per week starting from day 10 and ending on day 29 after inoculation of HCT 15 cells. To quantify tumor growth, three perpendicular diameters of the tumors are measured with calipers every 3-5 days, and the body weight of the mice was monitored for toxicity. The tumor volume is calculated[2].
IC50 & Target:IC50: 21 nM (breast MDA-MB-231), 19 nM (pancreas PANC-1), 17 nM (colon HCT 116), 19 nM (prostate PC3), 14 nM (ovary OVCAR-3), 32 nM (melanoma SK-MEL-28), 22 nM (kidney Caki-1), 32 nM (glioblastoma SNB19)[1] In Vitro 3-arylisoquinolinamine derivative is a 3-arylisoquinolinamine derivative, extracted from the reference[1], compound 7b.3-arylisoquinolinamine derivative (7b) shows more effective activity against Paclitaxel-resistant HCT-15 human colorectal cancer cell lines when compared to the original cytotoxic cancer drug, Paclitaxel. The cell cycle dynamics is analyzed by flow cytometry. Treatment of human HCT-15 cells with 3-arylisoquinolinamine derivative (7b) blocks or delays the progression of cells from G0/G1 phase into S phase, and induces cell death. Treatment with 3-arylisoquinolinamine derivative (7b) also significantly inhibits the growth of tumors and enhances tumor regression in a Paclitaxel-resistant HCT-15 xenograft model. 3-arylisoquinolinamine derivative (7b) inhibits the cell growth at IC50 value ranges from 14 nM to 32 nM in the human cancer cells tested. In cell cycle analysis using HCT-15 cells, treatment of 1 nM of 3-arylisoquinolinamine derivative (7b) displays a significant increase in G0/G1 phase at 24 h with a decrease in G2/M phase, but the increase of G0/G1 phase at 48 h is not significant. At higher concentration of 3-arylisoquinolinamine derivative (7b) (10 nM), there are a significant increase in G0/G1 phase and decrease in G2/M phase, and an emergence of sub-G1phase, at both 24 h and 48 h. 3-arylisoquinolinamine derivative (7b) blocks or delays the progression of cells from G0/G1 phase into S phase, and induces cell death[1]. 3-arylisoquinolinamine derivative is a 3-arylisoquinolinamine derivative, extracted from the reference[1], compound 13. 3-arylisoquinolinamine derivative (compound 13) is tested in colon cancer cells and its antitumor activity is compared with Paclitaxel. 3-arylisoquinolinamine derivative (IC50: 15 nM in HCT-15 cells, 17 nM in HCT116 cells) shows potent antiproliferative activities with IC50 value in the low nanomolar range in both cells and higher antitumor activities than that of Paclitaxel against Paclitaxel-resistant HCT-15 colorectal cancer cells[2]. MedChemExpress (MCE) has not independently confirmed the accuracy of these methods. They are for reference only. 0 --> 3-arylisoquinolinamine derivative Related Antibodies
Hot selling product:Trachelogenin | Rabeprazole (sodium) | Atenolol | Selonsertib | Butylphthalide | Rhein | Se-Methylselenocysteine | Bilirubin | Salmeterol | MRT67310
Trending products:Recombinant Proteins | Bioactive Screening Libraries | Natural Products | Fluorescent Dye | PROTAC | Isotope-Labeled Compounds | Oligonucleotides
References:
[1]. Yang SH, et al. Synthesis, in vitro and in vivo evaluation of 3-arylisoquinolinamines as potent antitumor agents. Bioorg Med Chem Lett. 2010 Sep 1;20(17):5277-81. [Content Brief]
Brand introduction:
• MCE (MedChemExpress) has a global exclusive compound library of more than 200 kinds, and we are committed to providing the most comprehensive range of high-quality small molecule active compounds for scientific research customers around the world;
• More than 50,000 highly selective inhibitors and agonists are involved in various popular signaling pathways and disease areas;
• The products cover a variety of recombinant proteins, peptides, commonly used kits, more PROTAC, ADC and other characteristic products, widely used in new drug research and development, life science and other scientific research projects;
• Provide virtual screening, ion channel screening, metabolomics analysis detection analysis, drug screening and other professional technical services;
• It has a professional experimental center and strict quality control and verification system;
• Provide LC/MS, NMR, HPLC, chiral analysis, elemental analysis and other quality inspection reports to ensure the high purity and high quality of products;
• The biological activity of the products has been verified by the experiments of customers in various countries;
• A variety of top journals such as Nature, Cell, Science and pharmaceutical patents have included the scientific research results of MCE customers;
• Our professional team tracks the latest pharmaceutical and life science research and provides you with the latest active compounds in the world;
• It has established long-term cooperation with the world's major pharmaceutical companies and well-known scientific research institutions。
