MtoZ Biolabs
  1. Companies
  2. MtoZ Biolabs
  3. Services
  4. MtoZ Biolabs - Active Substances ...

MtoZ BiolabsModel active-substances-screening - Active Substances Screening Service

SHARE
Drug screening refers to the evaluated process of substances (samples) potentially used as drugs, assessing their biological activity, pharmacological effects, and therapeutic value through appropriate methods. This process encompasses biochemical and cellular levels of screening, divided into high-throughput screening (HTS) and virtual screening.
Most popular related searches

MtoZ Biolabs is an integrate contract research organization (CRO) providing advanced proteomics, metabolomics, bioinformatics, and biopharmaceutical analysis services to researchers in biochemistry, biotechnology, and biopharmaceutical fields. The name of MtoZ represents “mass to charge ratio” in mass spectrometry analysis, as most of our services are provided based on our well-established mass spectrometry platforms. Our services allow for the rapid and efficient development of research projects, including protein analysis, proteomics, and metabolomics programs.

MtoZ Biolabs is specialized in quantitative multiplexed proteomics and metabolomics applications through the establishment of state-of-the-art mass spectrometry platforms, coupled with high-performance liquid chromatography technology. We are committed to developing efficient, and effective tools for addressing core bioinformatics problems. With a continuing focus on quality, MtoZ Biolabs is well equipped to help you with your needs in proteomics, metabolomics, bioinformatics, and biopharmaceutical research. Our ultimate aim is to provide more rapid, high-throughput, and cost-effective analysis, with exceptional data quality and minimal sample.

Email: marketing@mtoz-biolabs.com

Drug development is a long and complex process, broadly divided into four main stages:

1. Target Selection and Validation

2. Compound Screening and Lead Optimization

3. Preclinical Studies

4. Clinical Trials

Drug screening refers to the evaluated process of substances (samples) potentially used as drugs, assessing their biological activity, pharmacological effects, and therapeutic value through appropriate methods. This process encompasses biochemical and cellular levels of screening, divided into high-throughput screening (HTS) and virtual screening.

HTS is a standardized and quantifiable experimental protocol employed in drug screening. Depending on the experimental model, HTS can be categorized into biochemical and cellular level screenings. Biochemical screenings involve designing experiments on the drugs’ target, typically proteins with specific physiological functions, such as enzymes and receptors. Following the mixing of the candidate compound with the target, interactions can be quantitatively assessed using methods like enzyme-linked immunosorbent assay (ELISA), affinity mass spectrometry (ASMS), nuclear magnetic resonance (NMR), and surface plasmon resonance (SPR), which serve as the foundation for screening compounds. Cellular level screening, a model that more close to physiological conditions, targets the cells designated for drug action. Utilizing cell culture techniques to acquire the necessary cells and facilitating their interaction with candidate compounds allows for the evaluation of the compound’s efficacy through detection methodologies analogous to those employed in biochemical screening.

Virtual screening represents a novel trajectory in the evolution of drug screening techniques. Given that physical drug screening necessitates the establishment of a comprehensive compound library, the extraction or cultivation of a significant number of target proteins or cells, and the support of sophisticated equipment, virtual screening emerges as a computational strategy rooted in computer-aided drug design. It enables the identification of lead or pioneer compounds within a virtual small molecule compound library, markedly reducing the costs associated with drug development. Molecular docking, a mature method based on the development of computer, is extensively applied in the virtual docking. It facilitates the identification of novel compounds of therapeutic interest, predicting ligand-target interactions at the molecular level, or elucidating structure-activity relationships (SAR) without necessitating prior knowledge of the chemical structures of other target modulators.

[1] Chan HCS, Shan H, Dahoun T, Vogel H, Yuan S. Advancing Drug Discovery via Artificial Intelligence. Trends Pharmacol Sci. 2019 Aug;40(8):592-604. doi: 10.1016/j.tips.2019.06.004. Epub 2019 Jul 15. Erratum in: Trends Pharmacol Sci. 2019 Oct;40(10):801. PMID: 31320117.

[2] Pinzi L, Rastelli G. Molecular Docking: Shifting Paradigms in Drug Discovery. Int J Mol Sci. 2019 Sep 4;20(18):4331. doi: 10.3390/ijms20184331. PMID: 31487867; PMCID: PMC6769923.


MtoZ Biolabs offers a comprehensive preclinical drug development platform, providing services for the screening and identification of drug active ingredients. The team is equipped to identify the most efficacious active ingredients from a diversity of sources, including traditional Chinese medicine, through a suite of screening technologies such as ASMS, SPR, and intact protein mass spectrometry (Intact-MS). Services extend to the provision of compound libraries, pharmacological screening models, and the analysis of screening experimental data, delivering a one-stop solution for the identification and screening of active substances.